Novel Synthesis of 2-Aryl-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-ones and Their S-Oxides

by Anja Siegemund, Christine Hartung, Sven Baumann, and Bärbel Schulze*

Fakultät für Chemie und Mineralogie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig (phone: +49(0)341-9736540; fax: +49(0)341-9736599; e-mail: bschulze@organik.chemie.uni-leipzig.de)

Dedicated to Professor Dr. Manfred Mühlstädt on the occasion of his 75th birthday

2-Aryl-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2*H*)-ones **1a** – **e** were synthesized by cyclocondensation of 2-(thiocyanato)cyclohexene-1-carboxanilides **9** as a convenient new method. Their *S*-oxides **10** were prepared by two routes, either by oxidation of **1** or dehydration of *rac-cis*-3-hydroperoxysultims **11**. Furthermore, compounds **1** have been identified by HPLC – API-MS-MS as intermediates in the oxidation process of the salts **6**. The hydroperoxides **12b** and *rac-trans*-**11b** have been unambiguously detected by HPLC – MS investigations and in the reaction of *rac-cis*-**13b** with H₂O₂ to the hydroperoxides *rac-trans*-**11b** and *rac-cis*-**11b**.

Introduction. – Isothiazol-3(2H)-ones $\mathbf{A} - \mathbf{D}$ [1], 1,2-benzisothiazol-3(2H)-ones \mathbf{E} , and their heterocyclic bioisosteric derivatives are potent industrial microbiocides with antifungal and antibacterial activities [2]. As reported previously, 2-alkyl-4,5,6,7-tetrahydro-1,2-benzisothiazolones are prepared by cyclization of 2-oxocyclohexane-1-carboxamides with H_2S [3a-c], or 2-(benzylsulfinyl)cyclohexene-1-carboxamides and thionylchloride [4a-c]. These bicyclic 2-alkylisothiazolones are also antibacterial agents.

Here, we report a new synthesis of 2-aryl-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-ones **1** in a four step process from cyclohexanone (**2**) *via* 2-chlorocyclohexene-1-carbaldehyd (**3**) and the thiocyanate **4** (*Scheme 1*). Our strategy to synthesize bicyclic 2-arylisothiazolones of type **1** is based on the preparation of 2-(thiocyanato)cyclohexene-1-carboxylic acid (**5**), which could be easily obtained by oxidation of **4** [5], as the precursor. It was also possible to identify compounds of type **1** as intermediates in the oxidation of 2-arylisothiazolium salts **6** (*Scheme 2*) [6][7].

Results and Discussion. – According to *Scheme 1, Vilsmeier* reaction of cyclohexanone (2), vinylic SCN-substitution of 3, and oxidation of thiocyanate 4 gave 2-(thiocyanato)cyclohexene-1-carboxylic acid (5) [5]. The *N*-aryl group was introduced

Vilsmeier CHO
$$R^{1}$$

$$SCN^{-}$$

$$R^{1}$$

$$SCN^{-}$$

$$R^{1}$$

$$SCN^{-}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

by treatment of activated **7** with substituted anilines **8** to give the carboxanilides **9** [8]. H⁺-promoted cyclization then smoothly afforded the bicyclic isothiazolones $\mathbf{1a} - \mathbf{e}$, with characteristic chemical shifts of C(3) in the ¹³C-NMR spectra (167.2–168.3 ppm) and C=O absorption bands at 1647-1653 cm⁻¹ in the IR spectra.

As expected, the oxidation of **1a,b,e** (*m*-chloroperbenzoic acid, CH_2Cl_2 , 5°) led to the formation of the *S*-oxides **10a,b,e**. These compounds were also synthesized by elimination of H_2O from the isolated 3-hydroperoxy-sultims **11a,b**.

The structures of the new isothiazol-3(2H)-one 1-oxides 10 were established by IR and NMR spectroscopy. Typical signals of these compounds are found in the 13 C-NMR spectra at 166.0–167.0 ppm (C=O), and in the IR spectra at 1095–1108 cm $^{-1}$ (SO). The structure of 10a was confirmed by X-ray crystal-structure analysis (*Figure*). The isothiazole ring of 10a is nearly planar, N(1) protruding by 0.0202 Å from the plane between C(1), C(2), C(3), and S(1). The torsion angle between the isothiazole ring and the 2-aryl substituent was 51°. The crystal packing of 10a is stabilized by short nonclassical intermolecular C(7)–H···O(1) (2.428 Å) and Cl···H–C(4) (2.767 Å) H-bonds.

Recently, we have detected the isothiazolones 1 during the oxidation cascade of the isothiazolium perchlorates 6 with $H_2O_2/AcOH$ by monitoring the reaction with HPLC-API-MS-MS [7]. With this method, the position of primary attack in 6 (*Scheme 2*) was determined to be C(3), and both the transient intermediates 12 and their dehydration products 1 were unambiguously identified. Their structures and fragmentation behaviors were corroborated by MS analysis of the synthesized isothiazolones 1b,c under similar conditions.

 $Figure. \ \textit{Crystal structure of 2-(4-chlorophenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one \ 1-oxide \ \textbf{(10a)} }$

An unambiguous characterization of **12** [7] showed that the compound we had previously reported as 3-hydroperoxyisothiazole **12b** is in fact the so far elusive *ractrans*-**11b** [6], which was easily converted to *rac-cis*-**13b**, as shown by HPLC $^{-1}$ H-NMR-coupled technique. Now, we synthesized the bicyclic *rac-cis*-3-hydroxyisothiazole *S*-oxide **13b**, a stable crystalline compound, by reduction of *rac-cis*-**11b** in DMSO. In the 1 H-NMR spectrum, a *s* for H $^{-1}$ C(3) appears at 5.57 ppm, and the 13 C-NMR signals were found at 89.8, 145.7, and 144.0 ppm, corresponding to C(3), C(3a), and C(7a),

respectively. In the IR spectrum of rac-cis-13b, the typical sulfoxide absorption is found at $1036 \, \mathrm{cm}^{-1}$. The reaction of rac-cis-13b with $\mathrm{H_2O_2}$ led to the hydroperoxides rac-trans-11b and rac-cis-11b in a 1:1 ratio (Scheme~2), as corroborated by HPLC-MS investigations. This reaction from 3-hydroxy to 3-hydroperoxy sultims with $\mathrm{H_2O_2}$ has been known so far only for sultams [6].

Conclusions. – The cyclocondensation of 2-(thiocyanato)cyclohexene-1-carboxanilides **9** is an efficient new method for the synthesis of 2-arylisothiazolones of type **1**. Their *S*-oxides **1** could be synthesized in fair-to-good yields either by oxidation of **1** or dehydration of the *rac-cis-*3-hydroperoxysultims **11**. Furthermore, 2-arylisothiazolones **1** and the hydroperoxides **12** were unambiguously identified in the oxidation cascade of the salts **6** by monitoring the reaction with HPLC—API-MS-MS technique.

Financial support of this work by the *Deutsche Forschungsgemeinschaft*, the *Fonds der Chemischen Industrie*, and the *UFZ Leipzig-Halle* (for HPLC-MS-analysis) is gratefully acknowledged.

Experimental Part

General. Solvents were purified by standard procedures. TLC: Merck aluminum plates, silica gel $60~F_{254}$. Column chromatography (CC): Merck silica gel 60~(0.063-0.200~mm, 480-540~mesh). M.p.: Boetius micromelting-point apparatus; corrected. UV/VIS Spectra: Beckmann~DU-650; λ_{max} in nm ($\log \varepsilon$). IR spectra: Genesis~FTIR~Unicam~Analytical~System~(ATI~Mattson); KBr pellets; in cm $^{-1}$. H-NMR. Varian~Gemini-200~and~Varian~Unity-400; δ in ppm rel. to SiMe $_4$ as internal standard, J in Hz. 13 C-NMR Spectra: 50 or 100 MHz, recorded on the above spectrometers. MS: Quadrupole-MS~VG~12-250; 70 eV. HPLC-MS: LC~1100~(Applied~Biosystems), API~2000~(Perkin-Elmer).

General Procedure for the Preparation of 1a-e. To a stirred suspension of 3 (0.41 mmol) in anh. THF (3 ml) was added diphenylphosphinic chloride (0.45 mmol) under Ar gas at -10° , and the mixture was kept at this temp. for 30 min. Then, the corresponding aniline 8 (0.41 mmol) was added. The mixture was allowed to warm to r.t. and stirred until TLC analysis showed complete consumption of the aniline. The mixture was diluted with an equal volume of Et_2O , washed with 2m aq. NaOH soln., 1m aq. HCl soln., and brine, dried (MgSO₄) and concentrated under reduced pressure. The crude products were purified by CC on SiO_2 with AcOEt/hexane 1:1 (v/v) as eluent.

 $2\text{-}(4\text{-}Chlorophenyl)\text{-}4,5,6,7\text{-}tetrahydro\text{-}1,2\text{-}benzisothiazol\text{-}3}(2\text{H})\text{-}one$ (1a). Yield: 26%. Colorless crystals. M.p. $112\text{-}113^\circ$. UV (EtOH): 256.0 (4.04). IR: 1651s (C=O). $^1\text{H}\text{-}NMR$ (CDCl₃): 1.86 (m,2 CH₂); 2.33 (m,CH_2) ; 2.75 (m,CH_2) ; 7.72, 7.60 (AA'BB', J=9.0, 4 arom. H). $^{13}\text{C}\text{-}NMR$ (CDCl₃): 22.9, 23.7, 24.0, 25.5 (C(4–7)); 116.2 (2 arom. CH); 121.1 (arom. C); 126.2 (2 arom. CH); 130.7 (arom. C); 138.6 (C(3a)); 150.8 (C(7a)); 167.9 (C(3)). EI-MS: 265 (M^{++}) . Anal. calc. for C $_{13}\text{H}_{12}\text{CINOS}$ (265.77): C 58.75, H 4.55, N 5.27, S 13.57; found: C 58.54, H 4.49, N 5.35, S 13.41.

 $2\text{-}(2\text{-}Chlorophenyl)\text{-}4,5,6,7\text{-}tetrahydro\text{-}1,2\text{-}benzisothiazol\text{-}3(2H)\text{-}one } \textbf{(1b)}.$ Yield: 34%. Colorless crystals. M.p. $121-123^{\circ}.$ UV (EtOH): 277.0 (3.92). IR: 1653s (C=O). $^1\text{H-NMR}$ (CDCl₃): 1.88 (m, 2 CH₂); 2.44 (m, CH_2) ; 2.68 (m, CH_2) ; 7.32 – 7.41 (m, 3 arom. H); 7.48 – 7.54 (m, arom. H). $^1\text{-}3\text{C-NMR}$ (CDCl₃): 21.9, 22.7, 23.0, 24.8 (C(4–7)); 121.1 (arom. C); 128.2, 130.8, 131.1, 131.6 (4 arom. CH); 134.4 (C(3a)); 151.1 (C(7a)); 168.3 (C(3)). EI-MS: 265 $(M^{++}).$ Anal. calc. for C $_{13}\text{H}_{12}\text{ClNOS}$ (265.77): C 58.75, H 4.55, N 5.27, S 13.57; found: C 58.61, H 4.61, N 5.15, S 13.31.

4,5,6,7-Tetrahydro-2-phenyl-1,2-benzisothiazol-3(2H)-one (1c). Yield: 51%. Colorless crystals. M.p. 114–115° (lit. 109° [3a]). UV (EtOH): 246.0 (3.85), 280.0 (3.92). IR: 1651s (C=O). 1 H-NMR ((D₆)acetone): 1.86 (m, 2 CH₂); 2.33 (m, CH₂); 2.72 (m, CH₂); 7.23–7.32 (m, arom. H); 7.40–7.50 (m, 2 arom. H); 7.64–7.70 (m, 2 arom. H). 1 C-NMR ((D₆)acetone): 22.8, 23.7, 24.0, 25.4 (C(4–7)); 123.2 (arom. C); 124.9, 127.7, 130.8 (5 arom. CH); 139.8 (C(3a)); 150.5 (C(7a)); 167.9 (C(3)). EI-MS: 231 (M^+ *). Anal. calc. for C $_{13}$ H $_{13}$ NOS (231.33): C 67.49, H 5.66, N 6.06, S 13.86; found: C 67.55, H 5.58, N 6.01, S 13.61.

4,5,6,7-Tetrahydro-2-(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (**1d**). Yield: 48%. Colorless crystals. M.p. 90 – 92°. UV (EtOH): 276.5 (3.90). IR: 1653s (C=O). ¹H-NMR ((D₆)acetone): 1.85 (m, 2 CH₂); 2.08 – 2.34 (m, Me); 2.72 (m, 2 CH₂); 7.25, 7.52 (AA'BB', J = 8.5, 4 arom. H). ¹³C-NMR ((D₆)acetone): 20.9 (Me); 22.3,

23.1, 23.4, 24.7 (C(4 $^{-}$ 7)); 122.4, 124.3 (4 arom. CH); 130.4 (arom. C); 136.4 (C(4')); 136.9 (C(3a)); 149.5 (C(7a)); 167.2 (C(3)). EI-MS: 245 (M^{++}). Anal. calc. for $C_{14}H_{15}NOS$ (245.33): C 68.54, H 6.13, N 5.71, S 13.07; found: C 68.41, H 6.01, N 5.85, S 13.23.

4,5,6,7-Tetrahydro-2-(4-methoxyphenyl)-1,2-benzisothiazol-3(2H)-one (**1e**). Yield: 53%. Colorless crystals. M.p. 96–98°. UV (EtOH): 272.0 (3.93). IR: 1647s (C=O). ¹H-NMR ((D₆)acetone): 1.86 (m, 2 CH₂); 2.32 (m, CH₂); 2.69 (m, CH₂); 3.83 (s, MeO); 7.00, 7.49 (AA'BB', J = 9.1, arom. H). ¹³C-NMR ((D₆)acetone): 22.3, 23.1, 23.4, 24.7 (C(4–7)); 55.9 (MeO); 117.9, 122.7 (4 arom. CH); 126.6 (arom. C); 131.5 (C(3a)); 149.4 (C(7a)); 159.2 (C(4')); 167.2 (C(3)). EI-MS: 261 (M^{++}). Anal. calc. for C₁₄H₁₅NO₂S (261.33): C 64.34, H 5.78, N 5.36, S 12.27; found: C 64.21, H 5.65, N 5.48, S 12.11.

General Procedure for the Preparation of 10a, b,e. Method A: To a stirred soln. of 1 (0.1 mmol) in CH_2Cl_2 (2 ml) was slowly added m-chloroperbenzoic acid (MCPBA; 0.1 mmol) at 5° , and the mixture was kept for several hours at this temp. The mixture was quenched by the addition of aq. NaHSO $_3$ soln., washed with sat. aq. NaHCO $_3$ soln. and brine, dried (Na $_2SO_4$), and concentrated under reduced pressure. The crude products were purified either by recrystallization or CC on SiO $_2$, eluting with AcOEt/hexane.

Method B: rac-cis-3-Hydroperoxysultim 11 [6] (0.1 mmol) was shortly heated in EtOH (1 ml) and conc. HCl (0.1 ml). The product precipitated upon cooling (5 h) and was collected by filtration.

2-(4-Chlorophenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1-Oxide (10a). Yield: 68% (Method A), 18% (Method B). Colorless crystals. M.p. $111-112^{\circ}$. IR: 1108s (S=O); 1706s (C=O). 1 H-NMR ((D₆)acetone): 1.88 (m, 2 CH₂); 2.43 (m, CH₂); 2.63 (m, CH₂); 7.52 – 7.55 (m, 4 arom. H). 13 C-NMR ((D₆)acetone): 21.0, 21.9, 22.0, 22.1 (C(4-7)); 128.4, 129.9 (4 arom. CH); 133.4, 134.2 (2 arom. C); 135.7 (C(3a)); 157.1 (C(7a)); 166.0 (C(3)). EI-MS: 281 (M^{++}). Anal. calc. for C₁₃H₁₂ClNO₂S (281.79): C 55.41, H 4.29, N 4.97, S 11.38; found: C 55.27, H 4.15, N 4.77, S 11.25.

2-(2-Chlorophenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1-Oxide (10b). Yield: 81% (Method A), 35% (Method B). Colorless crystals. M.p. $94-96^\circ$. IR: 1095s (S=O); 1710s (C=O). 1 H-NMR ((D₆)acetone): 1.93 (m, 2 CH₂); 2.53 (m, CH₂); 2.64 (m, CH₂); 7.44 – 7.59 (m, 4 arom. H). 13 C-NMR ((D₆)acetone): 21.5, 22.4, 22.9, 23.9 (C(4–7)); 129.4, 129.8 (2 arom. CH); 130.7 (arom. C); 131.0, 131.3 (2 arom. CH); 134.8 (arom. C); 135.7 (C(3a)); 150.8 (C(7a)); 159.4 (C(3)). EI-MS: 281 (M^{++}). Anal. calc. for C₁₃H₁₂ClNO₂S (281.79): C 55.41, H 4.29, N 4.97, S 11.38; found: C 55.57, H 4.36, N 4.81, S 11.46.

4,5,6,7-Tetrahydro-2-(4-methoxyphenyl)-1,2-benzisothiazol-3(2H)-one 1-Oxide (10e). Yield: 63%. (Method A). Colorless crystals. M.p. 96–98°. IR: 1106s (S=O); 1697s (C=O). 1 H-NMR ((D₆)acetone): 1.86 (m, 2 CH₂); 2.40 (m, CH₂); 2.61 (m, CH₂); 3.84 (s, MeO); 7.04, 7.34 (AA'BB', J = 9.0, arom. H). 13 C-NMR ((D₆)acetone): 21.6, 22.2, 22.5, 23.4 (C(4–7)); 55.8 (MeO); 115.4 (2 arom. CH); 126.6 (arom. C); 129.6 (2 arom. CH); 131.4 (C(3a)); 149.4 (C(7a)); 160.5 (C(3)); 167.0 (C(4')). EI-MS: 277 (M^{++}). Anal. calc. for C₁₄H₁₅NO₃S (277.32): C 60.63, H 5.45, N 5.05, S 11.56; found: C 60.41, H 5.33, N 5.15, S 11.67.

Synthesis of rac-cis-2-Aryl-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-Oxides (11). The data of rac-cis-11b are given in [6]; rac-cis-11a was prepared according to [6].

rac-cis-2-(4-Chlorophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-Oxide (11a). Yield: 36%. Colorless crystals. M.p. $116-119^\circ$. UV (EtOH): 241.0 (4.19). IR: 1050s (S=O). 1 H-NMR ((D₆)acetone): 1.80 (m, 2 CH₂); 2.41 (m, 2 CH₂); 6.16 (s, H-C(3)); 7.35-7.40 (m, 4 arom. H); 11.04 (s, OOH). 13 C-NMR ((D₆)acetone): 22.0, 22.2, 23.1, 24.5 (C(4-7)); 98.3 (C(3)); 120.1 (2 arom. CH); 128.4 (arom. C); 130.3 (2 arom. CH); 141.8 (arom. C); 142.4 (C(7a)); 143.3 (C(3a)). EI-MS: 299 (M^{++}). Anal. calc. for C₁₃H₁₄ClNO₃S (299.79): C 52.08, H 4.72, N 4.67, S 10.69; found: C 51.93, H 4.65, N 4.41, S 10.48.

rac-cis-2-(2-Chlorophenyl)-2,3,4,5,6,7-hexahydro-3-hydroxy-1,2-benzisothiazole 1-Oxide (13b). A soln. of *rac-cis*-11b (0.2 mmol) [6] in DMSO (0.5 ml) was stirred for 2 h. The solvent was removed by lyophilization, and the crude product was purified by recrystallization from EtOH. Yield: 49%. Colorless crystals. M.p. 132–135°. UV (EtOH): 208.5 (4.13). IR: 1036s (S=O). 1 H-NMR ((D₆)acetone): 1.81 (m, 2 CH₂); 2.41 (m, 2 CH₂); 5.57 (s, H-C(3)); 7.38–7.55 (m, 4 arom. H). 13 C-NMR ((D₆)acetone): 21.2, 22.2, 22.8, 23.0 (C(4-7)); 89.8 (C(3)); 107.2, 109.6, 115.5, 128.4 (4 arom. CH); 131.1, 139.1 (2 arom. C); 144.0 (C(7a)); 145.7 (C(3a)). EI-MS: 284 (M^{++}). Anal. calc. for C₁₃H₁₄ClNO₂S (283.79): C 55.02, H 4.97, N 4.94, S 11.29; found: C 54.95, H 4.85, N 4.90, S 11.02.

Reaction of 13b with H_2O_2 . Isolated rac-cis-13b was dissolved in AcOH, and H_2O_2 was added. The products formed, rac-cis-11b and rac-trans-11b were separated by reversed-phase CC (aqua 125A RP-18; 30 × 2 mm; d_p 5 µm) and were identified by mass spectrometry.

X-Ray Crystal-Structure Analysis of 10a. Crystals were obtained from EtOH. The intensities were measured on a Siemens SMART CCD diffractometer. Data collection and cell refinement are listed in the Table. The structure was solved by direct methods, and refinement was performed with SHELX-97 [9]. Crystallo-

graphic data have been deposited with the *Cambridge Crystallographic Data Centre*, CCDC No. 217476. Copies of the data can be obtained, free of charge, from CCDC, 12 Union Road, Cambridge, CB21EZ, UK (fax: +44-1233-336033; e-mail: deposit@ccdc.cam.ac.uk; internet: http://www.ccdc.cam.ac.uk).

Table 1. Crystallographic Data of 10a

Empirical formula	$C_{13}H_{12}CINO_2S$
Formula weight [g mol ⁻¹]	281.75
Crystal color, habit	Colorless, plates
Temp. [K]	213(2)
Radiation, wavelength [Å]	$MoK_{a}, 0.71073$
Crystal dimensions [mm]	$0.30 \times 0.10 \times 0.10$
Crystal system	Monoclinic
Space group	P2(1)/n
2θ Range for cell determination [°]	4-56
Unit-cell parameters a [Å]; α [°]	9.6690(4); 90
b [Å]; eta [$^{\circ}$]	6.6324(3); 105.069(1)
c [Å]; γ [$^{\circ}$]	10.1149(4); 90
$V\left[\mathring{\mathbf{A}}^{3} ight]$	626.35(5)
$D [Mg/m^3]$	1.494
Absorption coefficient μ [mm ⁻¹]	0.464
Scan type	ω
$2\theta (\mathrm{max})[^{\circ}]$	56.0
Total reflections measured	5570
Symmetry-independent reflections	2563
Reflections observed $(I > 2\sigma(I))$	2409
Variables	211
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0565, wR_2 = 0.1465$
R indices (all data)	$R_1 = 0.0734, wR_2 = 0.1567$
$\Delta \rho \text{ (max, min) [e Å}^{-3}]$	0.461, -0.493
Goodness-of-fit (s)	1.113

REFERENCES

- [1] K. Taubert, S. Kraus, B. Schulze, Sulfur Rep. 2002, 23, 79.
- [2] A. Siegemund, K. Taubert, B. Schulze, Sulfur Rep. 2002, 23, 279.
- [3] a) B. Shroot, J. Maignan, Fr. Pat. 2492376 (*Chem. Abstr.* 1982, 97, 72355); b) B. Shroot, J. Maignan, U.S.
 Pat. 4,708,959 (*Chem. Abstr.* 1988, 109, 128996); c) B. Shroot, G. Lang, J. Maignan, M. Colin, Eur.
 Pat. 179697 (*Chem. Abstr.* 1986, 105, 209240).
- [4] J. Maignan, S. Restle, L. Colin, German Pat. DE 3618711 (Chem. Abstr. 1987, 106, 138433); J. Maignan, S. Restle, L. Colin, U.S. Pat. 4,851,541 (B. Shroot, J. Maignan, R. Schmidt (Centr. Intern. Recher. Dermatol.), Eur. Pat. 342105 (Chem. Abstr. 1990, 112, 178954).
- [5] G. Simchen, G. Entenmann, *Liebigs Ann. Chem.* **1977**, *8*, 1249.
- [6] C. Hartung, K. Illgen, J. Sieler, B. Schneider, B. Schulze, Helv. Chim. Acta 1999, 82, 685.
- [7] S. Baumann, M. Möder, R. Herzschuh, B. Schulze, Chromatographia 2003, 57, 147.
- [8] N. R. A. Beeley, L. M. Harwood, P. C. Hedger, J. Chem. Soc., Perkin Trans. 1 1994, 2245.
- [9] G. M. Sheldrick, SHELX-97: a Program System for Solution and Refinement of X-Ray Crystal Structures, University of Göttingen, 1997.

Received August 29, 2003